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ABSTRACT

This paper focuses on solving a stochastic variational inequality (SVI) problem
under relaxed smoothness assumption for a class of structured non-monotone oper-
ators. The SVI problem has attracted significant interest in the machine learning
community due to its immediate application to adversarial training and multi-agent
reinforcement learning. In many such applications, the resulting operators do not
satisfy the smoothness assumption. To address this issue, we focus on a weaker
generalized smoothness assumption called α-symmetric. Under p-quasi sharp-
ness and α-symmetric assumptions on the operator, we study clipped projection
(gradient descent-ascent) and clipped Korpelevich (extragradient) methods. For
these clipped methods, we provide the first almost-sure convergence results without
making any assumptions on the boundedness of either the stochastic operator or
the stochastic samples. Furthermore, we provide the first in-expectation unbiased
convergence rate results for these methods under a relaxed smoothness assumption.

1 INTRODUCTION

This paper focuses on the stochastic variation inequality (SVI) problem, which consists of finding a
point u∗ ∈ U , such that

⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U,

where the operator F (·) is specified as the expected value of a stochastic operator Φ(·, ·) : U × Ξ →
Rm, i.e.,

F (u) = E[Φ(u, ξ)] for all u ∈ U,

where ξ ∈ Ξ is a random vector. Variational Inequality (VI) problems encompass many practical
applications, such as optimization, min-max problems, and multi-agent games. In particular, they play
a vital role in modeling equilibrium problems where it’s important to capture an interaction between
many agents. In machine learning literature, the increasing focus on VIs is due to their relevance to
generative adversarial networks (GANs) Gemp & Mahadevan (2018); Gidel et al. (2019), actor-critic
methods Pfau & Vinyals (2016), adversarial training, and multi-agent reinforcement learning Sokota
et al. (2022); Kotsalis et al. (2022). In many such applications, the corresponding operator is defined
as an expected value of stochastic or finite sum of operators, which motivates us to study SVIs. One
of the pivotal works Nemirovski (2004); Juditsky et al. (2011) on SVIs proposed and studied the
celebrated Mirror-Prox method under assumptions on monotonicity and Lipschitz continuity of an
operator.1 These assumptions become classical for the analysis of first-order methods for solving
SVIs Beznosikov et al. (2022); Hsieh et al. (2019; 2020); Loizou et al. (2021).

In adversarial and multi-agent training, where the corresponding operator is a gradient of a highly
non-linear neural network model, these classical assumptions might not be satisfied. It is well-known
that one possible remedy for such non-convergent behavior is in clipping, normalization, or adaptive
stepsizes, such as ADAM (Kingma & Ba, 2015). This effect might be explained by the experiment
conducted in Zhang et al. (2020). In this work, authors observed that when training deep neural

1The well-studied Mirror-Prox method Nemirovski (2004) has been proven to be optimal for solving VIs
under strong monotonicity and Lipschitz continuity assumptions. In fact, this method is the stochastic version of
the classical extragradient method.
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network, the norm of the hessian of the loss function correlates with a norm of a gradient along the
optimization trajectory.

This observation motivated Zhang et al. (2020) to introduce a new and more realistic assumption on
the linear growth of the hessian. This led to a great number of works in optimization investigating
new assumptions on generalized smoothness and convergence behavior of classical gradient (Li et al.,
2023), normalized (Chen et al., 2023), clipped (Koloskova et al., 2023), and adaptive methods (Wang
et al., 2023; Zhang et al., 2024). Despite this progress in optimization, there are only a few works
on generalized smooth min-max (Xian et al., 2024) and VI (Vankov et al., 2024) problems. This
motivates us to delve into investigation of first-order methods for generalized smooth SVIs.

1.1 RELATED WORK

Weaker Assumption on SVIs. More work has focused on stochastic methods for SVI under more
relaxed assumptions to develop and analyze the methods applicable to broader problem classes.
In particular, some studies have explored SVIs under pseudo-monotonicity Kannan & Shanbhag
(2019), quasi-monotonicity Loizou et al. (2021), co-coercivity Beznosikov et al. (2023) and quasi-
sharpness Vankov et al. (2023). Diakonikolas et al. (2021) showed that such conditions may not
be satisfied even in two played Markov games and introduced the weakest known structured non-
monotone assumption. Later, weak Minty SVIs were studied Pethick et al. (2023); Choudhury et al.
(2023); Alacaoglu et al. (2024) under Lipschitz’s assumption on the operator. In our work, we
consider the generalized smooth assumption that goes beyond the existing settings.

Normalized and Clipped Methods for SVIs. Jelassi et al. (2022) studied the performance of
normalized stochastic gradient descent-ascent and ADAM and suggested the crucial role of normal-
ization for training GANs. It is worth noting that, with the right clipping parameters, clipped and
normalized step sizes are equivalent up to a constant. Another line of works Gorbunov et al. (2022)
focuses on smooth SVIs under heavy-tail noise. Using Lipschitz’s continuity of operator and the right
choice of clipping parameters, the authors showed a high probability convergence rate for the clipped
stochastic Korpelevich method. Recent work Xian et al. (2024) considered generalized smooth
stochastic nonconvex strongly-concave min-max problems and provided O( 1√

K
) convergence rates

for variants of stochastic gradient sescent ascent (SGDA) with normalized stepsizes. Due to the NEW
specific structure of the minmax problem and the fact that the gradient of the corresponding function
is nonmonotone in one variable and strongly monotone in another, it is difficult to compare this work
with ours. Moreover, in this work, the crucial part of the analysis is in the fact that the norm of a
gradient can be upper bounded by a function residual. One can not use such bounds in SVIs due to
the absence of function values. In our analysis, we develop a new technique to bound the operator
norm in almost sure (a.s.) sense and in expectation.

Stochastic Analysis of Clipped Methods for Generalized Smooth Optimization. In Zhang et al.
(2020), authors analyzed clipped gradient method under a.s. bounded error assumption. Koloskova
et al. (2023) showed that the gradient method with standard clipping may not converge to a solution
even with small stepsizes. The authors analyzed clipped gradient descent as a biased method and
provided a convergence rate for non-convex functions. Later, Li et al. (2024) developed a new
technique allowing to bound stochastic gradients by the function value residual along the optimization
trajectory, which helps to find the convergence rate for the gradient with the right choice of stepsizes.
In our work, we do not make an assumption on a.s. bounded noise and bounded stochastic gradients.
Furthermore, we provide not only in-expectations but also a.s. convergence of the considered clipped
methods.

Contributions. In light of the existing literature, we consider stochastic VIs with p-quasi sharp
generalized smooth α-symmetric operators. We assume a bounded variance of the noise and do
not use a restrictive assumption of bounded stochastic operators or bounded samples. Our key
contributions are summarized below (see also Table 1):

• We provide the first known analysis of the clipped stochastic clipped projection method (clipped
SGDA) for solving stochastic generalized smooth VIs with p-quasi sharp and α-symmetric oper-
ators. The key feature of our analysis is the use of cleverly chosen clipped stochastic stepsizes
γk. We use two different samples of stochastic the operator, one for clipping stepsizes γk and
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another for the direction of the method update. This choice allows us to separate the clipping
part from the stochastic error and analyze the method in an unbiased manner. To show a.s.
convergence, we prove that the series of clipped stochastic stepsizes is not summable a.s., i.e.
P(
∑∞

k=0 E[γk | Fk−1] = ∞) = 1.
• We also provide convergence rate for stochastic clipped projection method for α ≤ 1/2. For p = 2

we achieve O(k−1) last iterate convergence. For p > 2, we show the best iterate convergence rate
of O(k−2(1−q)/p), where 1 > q > 1/2 is a parameter of the stepsize choice.

• We provide the first known analysis of the stochastic clipped Korpelevich method for solving
stochastic generalized smooth VIs with p-quasi sharp and α-symmetric operators. By reusing
clipping stepsizes γk for both iterates updates hk and uk, we separate stochastic stepsize from the
stochastic error, similar to the projection method analysis. To show a.s. convergence, we prove that
the series of clipped stochastic stepsizes is not summable a.s., i.e. P(

∑∞
k=0 E[γk | Fk−1] = ∞) =

1.
• Moreover, we prove in-expectation convergence rates for the stochastic clipped Korpelevich

methods for α ≤ 1/2. For p = 2, we show the last iterate sublinear convergence rate O(k−1).
For p > 2, we show the best iterate convergence rate of O(k−2(1−q)/p), where 1 > q > 1/2 is a
parameter of the stepsize choice.

• Finally, we present numerical experiments where we compare the performance of the methods
with proposed stochastic clipping for different stepsize parameter q > 1/2 and quasi-sharpness
parameter p.

Stochastic Projection Stochastic Korpelevich
p > 0 Asym (Thm 3.2) Asym (Thm 4.2)

p = 2 O
(
D0

k2
+

σ2(CF + σ)2

µ2k

)
O
(
(CF + σ)2K2D0

µ2k2
+

(σ2 +K1σ
2α)(CF + σ)2

µ2k

)
p > 2 O

(
(D0 + σ2)2/p(CF + σ)2/p

µ2/pk2(1−q)/p

)
O
(
σ4/p(D0 + σ2 +K1σ

2α)2/p(CF + σ)2/p

µ2/pk2(1−q)/p

)
Table 1: Summary of convergence rate results showing the decrease of certain performance measures
with the number k of iterations. We use “Asym" as an abbreviation for asymptotic almost sure conver-
gence results. For p-quasi sharp operators, with p = 2, and for stochastic projection and Korpelevich
methods, the performance measures are Dk = E[dist2(uk, U

∗)] and Dk = E[dist2(hk, U
∗)], re-

spectively. For p > 2, the performance measure for both methods is Dbest
k = mint=0,...,k Dt. The

constant CF denotes the upper bound on E[∥F (uk)∥] and E[∥F (hk)∥] for stochastic projection and
Korpelevich methods, respectively.

The rest of the paper is organized as follows. In Section 2, we define the assumption on the operator
class we consider and define the first-order methods we focus on. In Section 3 we show the almost
sure convergence result of clipped stochastic projection method. In Section 4, we provide a.s.
convergence results and in-expectation convergence rates for the clipped stochastic Korpelevich
method. In Section 5, we conduct experiments on solving generalized smooth SVIs and compare the
performance of the stochastic clipped projection and Korpelevich method for different problem and
stepsize parameters. Section 6 concludes our work and presents some further research directions.

2 PRELIMINARIES

In this section, we provide the necessary concepts and assumptions for the considered SVI problem.
We start with a standard definition; the operator F is said to be Lipschitz continuous on a set U if
there exists L > 0 such that

∥F (u)− F (v)∥ ≤ L∥u− v∥ for all u, v ∈ U. (1)

So far, Lipschitz continuity of operator was the most common assumption to study SVIs Nemirovski
(2004); Yousefian et al. (2014; 2017); Hsieh et al. (2019); Loizou et al. (2021); Alacaoglu et al.
(2024). However, this assumption does not hold in modern deep-learning applications. Based on the
experiments provided in Zhang et al. (2020), the norm of Jacobian of the operator correlates with the
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norm of the operator. Recent work Chen et al. (2023) proposed a new, more realistic, and weaker
assumption termed α-symmetric given as follows: F is (L0, L1)-smooth operator on a set U if

∥F (u)− F (v)∥ ≤
(
L0 + L1 max

θ∈(0,1)
∥F (wθ)∥α

)
∥u− v∥ for all u, v ∈ U, (2)

where wθ = θu + (1 − θ)v and α ∈ (0, 1]. When the operator F (·) is L-Lipshitz continuous,
it satisfies (2) with L0 = L and L1 = 0. The class of α-symmetric operators includes the class
of (L0, L1)-smooth operators and coincides with it when an operator is differentiable for α = 1.
Given that the class of α-symmetric operators includes the class of (L0, L1)-smooth and Lipschitz
continuous operators we focus on this class in our work.
Assumption 2.1. Given a convex set U ⊆ Rm, the operator F (·) : U → Rm is α-symmetric over U ,
i.e., for some α ∈ (0, 1] and L0, L1 ≥ 0, we have for all u, v ∈ U ,

∥F (u)− F (v)∥ ≤
(
L0 + L1 max

θ∈(0,1)
∥F (wθ)∥α

)
∥u− v∥, (3)

where wθ = θu+ (1− θ)v.

An alternative characterization of α-symmetric operators has been proved in Chen et al. (2023), as
given in the following proposition.
Proposition 2.2 (Chen et al. (2023), Proposition 1). Let U ⊆ Rm be a nonempty convex set and let
F (·) : U → Rm be an operator. Then, the following statements hold:

(a) F (·) is α-symmetric with α ∈ (0, 1) and constants L0, L1 ≥ 0 if and only if the following
relation holds for all y, y′ ∈ U ,

∥F (y)− F (y′)∥ ≤ ∥y − y′∥(K0 +K1∥F (y′)∥α +K2∥y − y′∥α/(1−α)), (4)

where K0 = L0(2
α2/(1−α) + 1), K1 = L12

α2/(1−α)3α, and K2 =

L
1/(1−α)
1 2α

2/(1−α)3α(1− α)α/(1−α).

(b) F (·) is α-symmetric with α = 1 and constants L0, L1 ≥ 0 if and only if the following
relation holds for all y, y′ ∈ U ,

∥F (y)− F (y′)∥ ≤ ∥y − y′∥(L0 + L1∥F (y′)∥) exp(L1∥y − y′∥). (5)

Proposition 2.2 is useful for our analysis, since it describes an α-symmetric operator by using two
points y, y′ ∈ U , and bypasses the evaluation of maxθ∈(0,1) ∥F (wθ)∥α. The solution set for the
variational inequality problem defined by the set U and operator F , denoted U∗, is given by

U∗ = {u∗ ∈ U | ⟨F (u∗), u− u∗⟩ ≥ 0 for all u ∈ U}.

Throughout this paper, we make the following assumption on the set U and the solution set.
Assumption 2.3. The set U ⊆ Rm is a nonempty closed convex set, and the solution set U∗ is
nonempty and closed.

We use p-quasi sharp operators since, for such operators, the inner product between an operator value
F (u) and u − u∗ is positive, which is crucial in our analysis. Moreover, this class encompasses
both strongly monotone and strongly coherent operators and aligns with the class of operators that
satisfy the Saddle-Point Metric Subregularity Wei et al. (2021) for p > 2. The formal definition of
the p-quasi sharpness property is presented below.
Assumption 2.4. The operator F (·) : U → Rm has a p-quasi sharpness property over U relative to
the solution set U∗, i.e., for some p > 0, µ > 0, and for all u ∈ U and u∗ ∈ U∗,

⟨F (u), u− u∗⟩ ≥ µdistp(u, U∗). (6)

For solving the SVI problem, we consider stochastic variants of projection and Korpelevich Korpele-
vich (1976) methods, where stochastic approximations Φ(uk, ξk) and Φ(hk, ξ

1
k) are used, respectively,

instead of the directions F (uk) and F (hk). The iterates of each of the stochastic methods are defined
as follows:

4
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Stochastic projection method:

uk+1 = PU (uk − γkΦ(uk, ξk)), (7)

Stochastic Korpelevich method:

uk = PU (hk − γkΦ(hk, ξ
1
k)),

hk+1 = PU (hk − γkΦ(uk, ξ
2
k)),

(8)

where {γk > 0} is a sequence of stochastic stepsizes, and u0, h0 ∈ U are arbitrary deterministic
initial points2. At each operator evaluation of these stochastic methods, a random sample ξk is drawn
according to the distribution of the random variable ξ. We assume that the stochastic approximation
error Φ(u, ξ)− F (u) is unbiased and has finite variance, leading to the following formal assumption.

Assumption 2.5. The random sample ξ is such that for all u ∈ U ,

E[Φ(u, ξ)− F (u) | u] = 0, E[∥Φ(u, ξ)− F (u)∥2 | u] ≤ σ2.

Our proof techniques in the following sections can be applied to analyze the (a.s.) convergence and
convergence rate of the stochastic Popov (Popov, 1980) method with an appropriate selection of
stochastic clipping. However, due to space constraints, we leave this exploration for future research.

3 PROJECTION METHOD

Common approaches to developing convergent methods for generalized smooth optimization and VI
problems are normalized or clipping stepsizes. We focus on the latter one and present stepsizes for
the stochastic projection method for α-symmetric operators:

γk = βk min

{
1,

1

∥Φ(uk, ξ2k)∥

}
, (9)

where βk > 0 for all k ≥ 0 and ξ2k is a random variable, such that ξ2k and ξk are independent
conditionally on uk. In other words, at every iteration of the projection method, having uk, two
independent samples of the stochastic operator are drawn: (1) Φ(uk, ξk) for the direction of update
and (2) Φ(uk, ξ

2
k) for clipping stepsize γk. We define the sigma-algebra Fk for the method:

Fk = {ξ0, ξ20 , . . . , ξk, ξ2k} for all k ≥ 0, (10)

with F−1 = ∅. In the sequel, we provide important results on the behavior of the iterates of the
clipped stochastic projection method.

3.1 ALMOST SURE CONVERGENCE

The following lemma establishes a key relation for the iterate sequence {uk} generated by the
stochastic projection method with stochastic clipping stepsizes. Its proof is in Appendix B.1

Lemma 3.1. Let Assumptions 2.1, 2.3, 2.4, 2.5 hold, and {uk} be the iterate sequence generated
by stochastic projection method (7) with stepsizes γk defined in (9). Let parameter βk be such that∑∞

k=0 βk = ∞ and
∑∞

k=0 β
2
k < ∞. Then, the following relation holds almost surely for all k ≥ 0,

E[∥uk+1 − u∗∥2 | Fk−1] ≤ ∥uk − u∗∥2 − 2µE[γk | Fk−1]dist
p(uk, U

∗) + 3β2
k(2σ

2 + 1). (11)

Furthermore, almost surely, we have
∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞, (12)

and, the sequence {∥uk − u∗∥2} is bounded almost surely for all u∗ ∈ U∗.

2The results easily extend to the case when the initial points are random as long as E[∥u0∥2] and E[∥h0∥2]
are finite.
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In the conventional analysis of methods for SVIs with Lipschitz continuous operators, the sequence
{γk} of stepsizes is deterministic and such that

∑
k γk = ∞. In our case, γk is a random variable,

and to show a.s. convergence we have to show that the sequence {E[γk | Fk−1]} is not summable.
We do so, providing a sequence of lower bounds for series

∑∞
k=0 E[γk | Fk−1] and by showing that

random variable ∥F (uk)∥ is a.s. upper bounded for all k ≥ 0. In the next theorem, we present the
first results on a.s. convergence of the stochastic projection method.
Theorem 3.2. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold, and {uk} be the iterate sequence generated
by stochastic projection method (7) with stepsizes γk defined in (9). Let parameter βk be such that∑∞

k=0 βk = ∞ and
∑∞

k=0 β
2
k < ∞. Then, the iterates uk converge almost surely to a point ū such

that ū ∈ U∗ almost surely.

The full proof of Theorem 3.2 can be found in Appendix B.2. Notice that in an unconstrained setting NEW
(U = Rm) according to Theorems 3.1 and 3.2 in Koloskova et al. (2023) for any clipping parameters
β > 0, c > 0 there exist a stochastic gradient operator ∇ξf(·) which satisfies Assumptions 2.1, 2.4
(with p = 2), 2.5 for which there exists a fixed point v̂ of a standard clipping with one-sample which
there exists a solution

Eξ[βk min{1, c

∥∇ξf(v̂)∥
}] = v̂ and ∥Eξ[∇ξf(v̂)]∥ ≥ σ2/12,

where C > 0 is a constant independent from a step sizes parameter βk. This observation leads to
an unavoidable bias in one-sample clipped SGD (Koloskova et al., 2023). In contrast, by using two
sample in clipped projection method we overcome this problem and provide a.s. convergence to a
solution.

3.2 CONVERGENCE RATE

The difficulty of the convergence rate analysis is in the randomness of stepsizes γk. To show in-
expectation convergence, we can take a total expectation on both sides of equation (11) of Lemma 3.1.
However, since γk is a random variable, we have to provide a lower bound on E[γkdistp(uk, U

∗)].
With this goal in mind, in the next lemma we show that the sequence {E[∥F (uk)∥]} of expected
norms is bounded. The proof of the lemma is in Appendix B.3.
Lemma 3.3. Let Assumption 2.1 hold, with α ∈ (0, 1/2], Assumptions 2.3, 2.4, 2.5 hold, and {uk}
be iterate sequence generated by stochastic projection method (7) with stepsizes γk defined in (9). Let
parameter βk be such that

∑∞
k=0 βk = ∞, and

∑∞
k=0 β

2
k < ∞. Then, the sequence {E[∥F (uk)∥]}

is bounded by some constant CF > 0.

To prove the preceding lemma, we show that the expected norms of the operator are bounded by
some constant CF on the trajectory of the method. To show this, we use the properties of the method
and the generalized smoothness of the operator in Proposition 2.2 to obtain that for all k ≥ 0, and
arbitrary solution v∗,

∥F (uk)∥ ≤ ∥F (uk)− F (v∗)∥+ ∥F (v∗)∥
≤ ∥uk − v∗∥(K0 +K1∥F (v∗)∥α +K2∥uk − v∗∥α/(1−α)) + ∥F (v∗)∥. (13)

Notice that by taking an expectation in (13), the RHS is undefined for α > 1/2. For α ∈ (0, 1/2],
using (13) and boundedness of E[∥uk − v∗∥] we achieve the desired bound on E[∥F (uk)∥]. Using
this result, in the next theorem, we provide a convergence rate for the projection method with clipping.
Theorem 3.4. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, 2.5 hold. Let {uk}
be the sequence generated by stochastic projection method (7) with stepsizes γk defined in (9). Let
Dk = E[dist2(uk, U

∗)] and CF be an upperbound on E[∥F (uk)∥]. Then, we have:

Case p = 2. Let βk = 2
a(2+k) with a = µmin

{
1, 1

2(CF+σ)

}
. Then, the following inequality holds

Dk+1 ≤ 8D0

k2
+

6(2σ2 + 1)

a2k
for all k ≥ 1. (14)

Case p ≥ 2. Let βk = b
(k+1)q , where 1/2 < q < 1 and b > 0. Then, the following inequality holds

D̄k ≤
(1− q)2/p

(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)2/p
(ab)2/p ((k + 1)1−q − 21−q)

2/p
for all k ≥ 1, (15)
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where D̄k = E[dist2(ūk, U
∗)], ūk = (

∑k
t=0 βt)

−1
∑k

t=0 βtut, and a = µmin
{
1, 1

2(CF+σ)

}
.

For the simplicity of convergence rate comparison, assume 2(CF + σ) ≥ 1. Then, from Theorem 3.4

we obtain O(D0

k2 + σ2(CF+σ)2

µ2k ) last iterate convergence rate for p = 2, and O( (D0+σ2)2/p(CF+σ)2/p

µ2/pk2(1−q)/p )

average (or best) iterate convergence rate for p > 2 with q ∈ (1/2, 1). It is worth mentioning that NEW
obtained rates are unbiased, unlike the analysis in Koloskova et al. (2023). However, it comes with the
price of two oracle calls per iteration. For p = 2, the rate from Theorem 3.4 matches the rate O( 1k )
obtained in Theorem 4.3 (Loizou et al., 2021) for SGDA under stronger assumption on quasi-strong
monotonicity and Lipschitz continuity of the operator. The rate for p > 2 is new in the stochastic
case and generalizes the convergence results in deterministic setting (Vankov et al., 2024). The proof
of Theorem 3.4 is in Appendix B.4.

4 KORPELEVICH METHOD

The stepsizes for the stochastic Korpelevich method for α-symmetric operators are as given below

γk = βk min

{
1,

1

∥Φ(hk, ξ1k)∥

}
, (16)

where βk > 0 for all k ≥ 0 and ξ1k is a random variable associated with the stochastic approximation
Φ(hk, ξ

1
k) of F (hk). We define the sigma-algebra Fk for the method, as follows:

Fk = {ξ10 , ξ20 , . . . , ξ1k, ξ2k} for all k ≥ 0, (17)

with F−1 = ∅. Notice that to obtain hk+1 from a point uk, the stepsize γk clips Φ(hk, ξ
1
k), not the

stochastic approximation Φ(uk, ξ
2
k) of the operator at point uk, i.e., we have

hk+1 = PU

(
uk − βk min

{
1,

1

∥Φ(hk, ξ1k)∥

}
Φ(uk, ξ

2
k)

)
. (18)

Thus, sample ξ2k is drawn after ξ1k, and Φ(hk, ξ
1
k) is measurable with respect to Fk−1 ∪ ξ1k. This

property of the stochastic Korpelevich method with clipping stepsizes γk is crucial for further
convergence analysis of the method. In the sequel, we provide important results on the behavior of
the iterates of the clipped stochastic Korpelevich method.

4.1 ALMOST SURE CONVERGENCE

In the forthcoming lemma, we provide some basic relations that hold almost surely for the iterates of
the stochastic Korpelevich method with clipped stochastic stepsize.
Lemma 4.1. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold. Also, let {hk} and {uk} be iterates
generated by stochastic Korpelevich method (8) with stepsizes γk defined in (16) and with parameter
βk such that

∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞. Then, the following relation holds almost surely

E[∥hk+1 − u∗∥2 | Fk−1] ≤ ∥hk − u∗∥2 − 1

2
∥hk − uk∥2 − 2µE[γk | Fk−1]dist

p(uk, U
∗)

+ 6β2
k(σ

2 + Ce(βk, α)σ
2α) for all k ≥ 0,

(19)
where Ce(βk, α) = K1, when α ∈ (0, 1), and Ce(βk, α) = exp(L1βk), when α = 1. Moreover, the
following relations hold almost surely,

∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞,

∞∑
k=0

∥hk − uk∥2 < ∞. (20)

Furthermore, the sequence {∥hk − u∗∥} is bounded almost surely for all u∗ ∈ U∗.

The proof of Lemma 4.1 is in Appendix C.1.

In a standard analysis of the Korpelevich method for SVI with Lipschitz operators Kannan &
Shanbhag (2019); Vankov et al. (2023), a.s. convergence results were achieved for a deterministic
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sequence {γk}. In our case, similarly to projection method analysis, {γk} is a sequence of random
variables, which makes the analysis of the methods more difficult and involved. By the choice of
stepsizes γk as given in (16), the following relation holds true

E[γk⟨Φ(uk, ξ
2
k)− F (uk), uk − u∗⟩ | Fk−1] = 0 for all k ≥ 0. (21)

To prove (21) for the stochastic Korpelevich method, we note that the clipping stepsize is using
∥Φ(hk, ξ

1
k)∥, which decouples from Φ(uk, ξ

2
k) by properly using conditional expectation. Specifically,

we first take the expectation conditioned on Fk−1 ∪ ξ1k. Since γk is measurable with respect to
Fk−1 ∪ ξ1k, we use Assumption 2.5 and the law of the total expectation. Interestingly, we do not have
to take another sample for the clipping in the stochastic Korpelevich method, as we have done in the
stochastic projection method. Thus, to perform one iteration, we use two oracle calls in both methods.

Using Lemma 4.1, we next present the almost sure convergence of the clipped Korpelevich method.
Theorem 4.2. Let Assumptions 2.1, 2.3, 2.4, and 2.5 hold and {hk}, {uk} be iterates generated by
stochastic Korpelevich method (8) with stepsizes γk defined in (16). Let parameter βk be such that∑∞

k=0 βk = ∞, and
∑∞

k=0 β
2
k < ∞. Then, the iterates hk and uk converge almost surely to a point

ū such that ū ∈ U∗ almost surely.

To prove a.s. convergence, we firstly show that
∑∞

k=0 E[γk | Fk−1] = ∞ a.s., by providing a
sequence of lower bounds on E[γk | Fk−1], using a.s. boundedness of ∥hk − u∗∥ of Lemma 4.1, and
proving that ∥F (hk)∥ is a.s. bounded. The full proof can be found in Appendix C.2.

4.2 CONVERGENCE RATE

We start our analysis by taking the total expectation on both sides of equation (19) from Lemma 4.1.
For further analysis, similar to the clipped stochastic projection methods, the challenge lies in the ran-
domness of the stepsizes γk. To handle this, firstly, we establish a lower bound for E[γkdistp(uk, U

∗)]
by showing that the sequence {E[|F (uk)|]} of expected norms remains bounded, as shown in the
next lemma. The proof of the lemma can be found in Appendix B.3.
Lemma 4.3. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, 2.5 hold. Let {uk},
{hk} be iterates generated by stochastic Korpelevich method (8) with stepsizes γk defined in (16)
and the parameter βk such that

∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞. Then, E[∥F (hk)∥] is bounded

by some constant CF > 0 for all k ≥ 0.

Similarly to the analysis presented in Section 3, we bound F (hk) by using a triangle inequality and
the property of α-symmetric operators, and by taking the total expectation, we obtain

E[∥F (uk)∥] ≤ K0E[∥uk − v∗∥] +K2E[∥uk − v∗∥α/(1−α))] + ∥F (v∗)∥+K1∥F (v∗)∥α. (22)

We can show that the preceding bound has a finite expectation only for 0 < α ≤ 1/2, which motivates
the restriction on α in Lemma 4.3. Equipped with the boundedness of the sequence {E[∥F (hk)∥} of
expected norms of the operator along the iterates {hk}, we present the next convergence rate theorem.
Theorem 4.4. Let Assumption 2.1, with α ∈ (0, 1/2], and Assumptions 2.3, 2.4, 2.5 hold. Let {uk},
{hk} be iterates generated by stochastic Korpelevich method (8) with stepsizes γk defined in (16). Let
Dk = E[dist2(hk, U

∗)] and CF be an upperbound on E[∥F (hk)∥] then the following results holds:

Case p = 2. Let βk =
2

a( 2da + k)
, with a = µmin

{
1, 1

2(CF+σ)

}
, d = max{4µ, 2

√
3(K0 +K1 +

K2)} where K0,K1, and K2 are from Proposition 2.2(a). Then, the following relation holds

Dk+1 ≤ 8d2D0

a2k2
+

12(σ2 +K1σ
2α)

a2k
for all k ≥ 1. (23)

Case p ≥ 2. Let βk = b
(k+1)q , where 1/2 < q < 1 and 0 < b ≤ min

{
1
4µ ,

1
2
√
3(K0+K1+K2)

}
. Then,

the following inequality holds for all k ≥ 1,

D̄k ≤
22(p−2)/p(1− q)2/p

(
D0 + 6b2(σ2 +K1σ

2α)(2σ2 + 1)/(2q − 1)
)2/p

(ab)2/p ((k + 1)1−q − 21−q)
2/p

, (24)

where D̄k = E[dist2(ūk, U
∗)], ūk = (

∑k
t=0 βt)

−1
∑k

t=0 βtut, and a = µmin
{
1, 1

2(CF+σ)

}
.

8
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The proof of Theorem 4.4 is provided in Appendix C.4. For the simplicity of convergence rate
comparison, assume 2(CF+σ) ≥ 1 and K0+K1+K2 ≥ 2µ√

3
. Then by denoting K = K0+K2+K3,

from Theorem 4.4, we obtain O( (CF+σ)2K2D0

µ2k2 + (σ2+K1σ
2α)(CF+σ)2

µ2k ) last iterate convergence for

p = 2, and O
(

σ4/p(D0+σ2+K1σ
2α)2/p(CF+σ)2/p

µ2/pk2(1−q)/p

)
average (or best) iterate convergence rate for p > 2

with q ∈ (1/2, 1). In both cases p = 2 and p > 2 the convergence rate of clipped stochastic projection NEW
method in Theorem 3.4 and the rate of clipped stochastic Korpelevich method in Theorem 4.4 have
the same dependency in k. For p = 2 the rate from Theorem 4.4 matches the rate O( 1k ) obtained
in Proposition 5 (Kannan & Shanbhag, 2019) for stochastic Korpelevich method under stronger
assumption on strong pseudo monotonicity and Lipschitz continuity of the operator. For p > 2, the
obtained rate is new in stochastic case and generalize the results in deterministic setting for Lipschitz
continuous operators (Wei et al., 2021) and α-symmetric operators (Vankov et al., 2024).

5 NUMERICAL EXPERIMENTS

We study the performance of the clipped stochastic projection and Korpelevich methods, for different
values of parameters α > 0 and p > 0. Despite the absence of analysis, we also implement the NEW
clipped stochastic Popov method with γk = βk min{1, 1

∥F (hk)∥ ,
1

(∥uk−hk−1∥+1)α/(1−α) }:

uk+1 = PU (uk − γkΦ(hk, ξk)), hk+1 = PU (uk+1 − γk+1Φ(hk, ξk)),

where u0, h0 ∈ U are arbitrary deterministic initial. We consider an unconstrained SVI(R2, F ) with
the following stochastic operator

Φ(u, ξ) =

[
sign(u1)|u1|p−1 + u2

sign(u2)|u2|p−1 − u1

]
+ ξ,

where ξ is a random vector with independent zero-mean Gaussian entries and with variance σ2 = 1.
Then, F (u) = E[Φ(u, ξ)] is an α-symmetric and p-quasi sharp operator due to Vankov et al. (2024).
We set these parameters to be {(α ≈ 0.33, p = 2.5), (α ≈ 0.5, p = 3.0), (α ≈ 0.8, p = 6.0)}. We
also compare our results with the projection method that uses the same sample clipping, meaning
stepsizes γk clip ∥Φ(uk, ξk)∥ instead of a different sample ∥Φ(uk, ξ

2
k)∥.
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(a) (α ≈ 0.33, p = 2.5)
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(b) (α = 0.5, p = 3.0)

0 200 400 600 800 1000
Number of iterations

10 1

100

101

102

Di
st

an
ce

 to
 so

lu
tio

n

Convergence
Projection
Projection-Same
Popov
Korpelevich

(c) (α ≈ 0.8, p = 6.0)

Figure 1: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and
Popov methods with β = 100/(100 + k1/2+ϵ).

In Figure 1, we plot an average distance over twenty runs to the solution set as a function of the number
of iterations. In particular, the stepsizes for clipped stochastic projection and Korpelevich methods
are chosen according to Theorems 3.4 and 4.4, respectively, with βk = 100

100+kq for q = 1/2 + ϵ with
ϵ > 0. Note that, according to Theorems 3.4 and 4.4, the parameter q should be greater than 1/2;
meanwhile, the rates in these theorems are better for smaller choices of q. We also set βk = 100

100+kq

for clipped stochastic Popov method and the clipped stochastic projection method using the same
sample Φ(uk, ξk) for clipping.

Based on this experiment, we made three important observations. Firstly, the clipped stochastic
projection method and same-sample clipped stochastic projection method show similar results
despite the fact that the same-sample stochastic projection method has a biased error. Secondly, for
α ≤ 1/2 as predicted in theory (Theorems 3.4, 4.4), both projection and Korpelevich methods show
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(b) (α = 0.5, p = 3.0)
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(c) (α ≈ 0.8, p = 6.0)

Figure 2: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and
Popov methods with β = 100/(100 + k1−ϵ).

in-expectation convergence, while for α > 1/2 Korpelevich method has less stable performance.
Finally, despite the fact that for stochastic Lipschitz SVI, Korpelevich method outperforms the
projection method, we don’t see this in generalized smooth SVIs.

Next, we investigate the performance of the methods for larger values of q. In Figure 2, we set
q = 1 − ϵ, and corresponding βk = 100

100+k1−ϵ and run all four methods for the same problem
parameter setting. We observe that for all considered α, despite the theory, a larger choice of q FIX
improved the performance of all methods in the σ-neighborhood. Furthermore, it seems that larger
values of q help to stabilize the clipped stochastic Korpelevich method for α > 1/2.

Additionally, we conducted an experiment studying the robustness of the methods with a larger choice
of the initial parameter value β0, which are included in Appendix D.

6 CONCLUSION

This paper studied the SVI problem under generalized smooth and structured non-monotone assump-
tions. Specifically, we consider α-symmetric and p-quasi-sharp operators, a class of generalized
smooth and structured non-monotone operators for SVIs. For this wide class of operators, we proved
the first-known almost sure convergence of clipped stochastic projection and Korpelevich methods
for all parameters p. We also provided O(1/k) convergence rate for both considered methods when
the operator is p-quasi sharp with p = 2. For p > 2 we provided O(k−2(1−q)/p) average (or best)
iterate convergence rate for both methods, where q is a stepsizes parameter 1/2 < q < 1. Despite the
generality of our results, there are still open questions remain. In particular, it would be interesting
to know if it is possible to show in-expectation convergence rates for α-smooth SVI α > 1/2.
Another attractive direction of further research in generalized smooth SVIs is in relaxation of p-quasi
sharpness assumption to Minty (µ = 0) or weak Minty conditions. We also believe that our technique
for proving almost sure convergence and in-expectation rates can be used for the analysis of other
methods whose stepsizes are random variables, for example, clipped stochastic Popov method or
first-order methods with adaptive stepsizes.
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Daniil Vankov, Angelia Nedić, and Lalitha Sankar. Last iterate convergence of popov method for
non-monotone stochastic variational inequalities. arXiv preprint arXiv:2310.16910, 2023.
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A TECHNICAL LEMMAS

In our analysis, we use the properties of the projection operator PU (·) given in the following lemma.

Lemma A.1. (Theorem 1.5.5 and Lemma 12.1.13 in Facchinei & Pang (2003)) Given a nonempty
convex closed set U ⊂ Rm, the projection operator PU (·) has the following properties:

⟨v − PU (v), u− PU (v)⟩ ≤ 0 for all u ∈ U, v ∈ Rm, (25)

∥u− PU (v)∥2 ≤ ∥u− v∥2 − ∥v − PU (v)∥2 for all u ∈ U, v ∈ Rm, (26)

∥PU (u)− PU (v)∥ ≤ ∥u− v∥ for all u, v ∈ Rm. (27)

In the forthcoming analysis, we use Lemma 11 Polyak (1987), which is stated below.

Lemma A.2. [Lemma 11 Polyak (1987)] Let {vk}, {zk}, {ak}, and {bk} be nonnegative random
scalar sequences such that almost surely for all k ≥ 0,

E[vk+1 | Fk] ≤(1 + ak)vk − zk + bk, (28)

where Fk = {v0, . . . , vk, z0, . . . , zk, a0, . . . , ak, b0, . . . , bk}, and a.s.
∑∞

k=0 ak < ∞,
∑∞

k=0 bk <
∞. Then, almost surely, limk→∞ vk = v for some nonnegative random variable v and

∑∞
k=0 zk <

∞.

As a direct consequence of Lemma A.2, when the sequences {vk}, {zk}, {ak}, {bk} are deterministic,
we obtain the following result.

Lemma A.3. Let {v̄k}, {z̄k}, {āk}, {b̄k} be nonnegative scalar sequences such that for all k ≥ 0,

v̄k+1 ≤(1 + āk)v̄k − z̄k + b̄k, (29)

where
∑∞

k=0 āk < ∞ and
∑∞

k=0 b̄k < ∞. Then, limk→∞ v̄k = v̄ for some scalar v̄ ≥ 0 and∑∞
k=0 z̄k < ∞.

Lemma A.4. Let X be a non-negative random variable such that E[Xρ] is defined for some ρ ≥ 1,
and E[Xρ] ̸= 0, then for every a > 0 it holds

P(X > a(E[Xρ])1/ρ ≤ 1

aρ
. (30)

Proof. Let Y = Xρ. By the conditions of the lemma, the expectation E[Y ] = E[Xρ] is well defined.
Then, by Markov’s inequality:

P(X > a(E[Xρ])1/ρ) = P(Y > aρE[Xρ])

≤ E[Xρ]

aρE[Xρ]
.

■

Lemma A.5. Let a1, a2 be nonnegative scalar and p > 0. Then the following inequality holds:

(a1 + a2)
p ≤ 2p−1(ap1 + ap2).

Proof. Let a = (a1, a2), b = (1, 1), then by Hölder inequality:

a1 + a2 = ∥ab∥
≤ ∥a∥p∥b∥p/(p−1)

≤ (ap1 + ap2)
1/p(1 + 1)(p−1)/p.

Raising the inequality in the power p we get the desired relation. ■
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A.1 AUXILIARY RESULTS

In our analysis we make use of Lemma 3 and Lemma 7 from Stich (2019), as well as the sequences
provided in the proofs in Stich (2019).

Lemma A.6. Let {rk} and {sk} be nonnegative scalar sequences that satisfy the following relation

rk+1 ≤ (1− aαk)rk − bαksk + cγ2
k for all k ≥ 0,

where a > 0, b > 0, c ≥ 0, and

γk =
2

a
(
2d
a + k

) for all k ≥ 0,

where d ≥ a. Then, for any given K ≥ 0, the following relation holds:

b

WK

K∑
k=0

wksk + arK+1 ≤ 8d2

aK2
r0 +

2c

aK
,

where wk = 2d/a+ k, 0 ≤ k ≤ K, and WK =
∑K

k=0 wk.

Lemma A.7. For 1 > q ≥ 1/2 and K ≥ 1, we have

K∑
t=0

1

(t+ 1)q
≥ 1

1− q
((K + 1)1−q − 21−q). (31)

For q = 1/2 and K ≥ 1,

K∑
t=0

1

(t+ 1)2q
≤ log(K + 1). (32)

For q > 1/2 and K ≥ 1,

K∑
t=0

1

(t+ 1)2q
≤ 1

2q − 1
. (33)

Proof. Let 1 > q ≥ 1/2 and K ≥ 1. Then, it holds

K∑
t=0

1

(t+ 1)q
≥
∫ K

s=1

ds

(s+ 1)q
=

1

1− q
((K + 1)1−q − 21−q). (34)

When q = 1/2 and K ≥ 1, then

K∑
t=0

1

t+ 1
≤
∫ K

s=0

ds

s+ 1
= log(K + 1). (35)

When q > 1/2 and K ≥ 1, we have that

K∑
t=0

1

(t+ 1)2q
≤
∫ K

s=0

ds

(s+ 1)2q
=

1

2q − 1
− 1

(2q − 1)(K + 1)2q−1
<

1

2q − 1
. (36)

■

B PROJECTION METHOD ANALYSIS

B.1 PROOF OF LEMMA 3.1
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Proof. Let k ≥ 0 be arbitrary but fixed. From the definition of uk+1 in (7), we have ∥uk+1 − y∥2 =
∥PU (uk − γkΦ(uk, ξk))− y∥2 for all y ∈ U . Using the non-expansiveness property of projection
operator (27) we obtain for all y ∈ U and k ≥ 0,

∥uk+1 − y∥2 ≤ ∥uk − γkΦ(uk, ξk)− y∥2

= ∥uk − y∥2 − 2γk⟨Φ(uk, ξk), uk − y⟩+ γ2
k∥Φ(uk, ξk)∥2

= ∥uk − y∥2 + γ2
k∥Φ(uk, ξk)∥2

− 2γk⟨F (uk), uk − y⟩+ 2γk⟨ek, uk − y⟩, (37)

where ek = F (uk)− Φ(uk, ξk). By the definition of the stepsizes (9), γk = βk min{1, 1
∥Φ(uk,ξ2k)∥

},

then the term γ2
k∥Φ(uk, ξk)∥2 can be upper bounded as follows

γ2
k∥Φ(uk, ξk)∥2 = γ2

k∥Φ(uk, ξk)− F (uk) + F (uk)− Φ(uk, ξ
2
k) + Φ(uk, ξ

2
k)∥2

≤ β2
k min

{
1,

1

∥Φ(uk, ξ2k)∥2

}
3(∥ek∥2 + ∥e2k∥2 + ∥Φ(uk, ξ

2
k)∥2)

≤ 3β2
k∥ek∥2 + 3β2

k∥e2k∥2 + 3β2
k, (38)

where ek = F (uk)− Φ(uk, ξk), e
2
k = F (uk)− Φ(uk, ξ

2
k). Thus,

∥uk+1 − y∥2 ≤ ∥uk − y∥2 − 2γk⟨F (uk), uk − y⟩
+ 2γk⟨ek, uk − y⟩+ 3β2

k(∥ek∥2 + ∥e2k∥2 + 1). (39)

Plugging in y = u∗ ∈ U∗, where u∗ is an arbitrary solution, and using p-quasi sharpness we get:

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − 2µγkdist
p(uk, U

∗)

+ 2γk⟨ek, uk − u∗⟩+ 3β2
k(∥ek∥2 + ∥e2k∥2 + 1). (40)

Using stochastic properties of ξk and ξ2k imposed by Assumption 2.5, and the conditional indepen-
dence of ξk and ξ2k, we have:

E[γk⟨ek, uk − u∗⟩|Fk−1] = E[γk | Fk−1]⟨E[ek | Fk−1], uk − u∗⟩ = 0.

E[∥ek∥2 | Fk−1] ≤ σ2, E[∥e2k∥2 | Fk−1] ≤ σ2.

Thus, by taking the conditional expectation on Fk−1 = {ξ0, ξ20 , . . . , ξk−1, ξ
2
k−1} in relation (40) we

obtain for all u∗ ∈ U∗ and for all k ≥ 0:

E[∥uk+1 − u∗∥2|Fk−1] ≤ ∥uk − u∗∥2 + 3β2
k(2σ

2 + 1)

− 2µβkE
[
min

{
1,

1

∥Φ(uk, ξ2k)∥

}
| Fk−1

]
distp(uk, U

∗). (41)

The equation (41) satisfies the condition of Lemma A.2 with

vk = ∥uk − u∗∥2, ak = 0, zk = 2µE[γk | Fk−1] dist
p(uk, U

∗), bk = 3β2
k(2σ

2 + 1). (42)

By Lemma A.2, it follows that the sequence {vk} converges a.s. to a non-negative scalar for any
u∗ ∈ U∗, and almost surely we have

∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞. (43)

Since the sequence {∥uk − u∗∥2} converges a.s. for all u∗ ∈ U∗, it follows that the sequence
{∥uk − u∗∥} is bounded a.s. for all u∗ ∈ U∗. ■
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B.2 PROOF OF THEOREM 3.2

Proof. To show almost sure convergence, we need to show that
∑∞

k=0 E[γk | Fk−1] is not summable
almost surely. To do so, we provide a sequence of lower bounds on E[γk | Fk−1]. First, consider the
following event:

Ak = {∥e2k∥ ≤ 2E[∥e2k∥ | Fk−1]},
where e2k = F (uk) − Φ(uk, ξ

2
k) is a stochastic error from the sample for the clipping stepsize γk.

Then, by the law of total expectation

E[γk | Fk−1] = E[γk | Fk−1 ∪Ak]P(Ak | Fk−1) + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1). (44)

We want to provide a lower bound on P(Ak | Fk−1). To do so, we upperbound P(Ak | Fk−1) using
Markov’s inequality and Assumption 2.5:

P(Ak | Fk−1) = P(∥ek∥ > 2E[∥e2k∥ | Fk−1]}) ≤
E[∥e2k∥ | Fk−1]

2E[∥e2k∥ | Fk−1])
=

1

2
. (45)

Thus,

E[γk | Fk−1] = E[γk | Fk−1 ∪Ak](1− P(Ak | Fk−1)) + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1)

≥ 1

2
E[γk | Fk−1 ∪Ak] + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1)

≥ 1

2
E[γk | Fk−1 ∪Ak]. (46)

By definition of γk, triangle inequality and definition of event Ak, it holds

E[γk | Fk−1 ∪Ak] = βkE[min

{
1,

1

∥Φ(uk, ξ2k)∥

}
| Fk−1 ∪Ak]

≥ βkE
[
min

{
1,

1

∥F (uk)∥+ ∥e2k∥

}
| Fk−1 ∪Ak

]
.

(47)

Next, we use the definition of the event Ak to provide the next lower bound:

E[γk | Fk−1 ∪Ak] ≥ βkE[min

{
1,

1

∥F (uk)∥+ 2E[∥e2k∥ | Fk−1]

}
| Fk−1 ∪Ak]

≥ βkE[min

{
1,

1

∥F (uk)∥+ 2σ

}
| Fk−1 ∪Ak]

= βk min

{
1,

1

∥F (uk)∥+ 2σ

}
. (48)

The first inequality in the preceding equation holds by definition of event Ak = {∥e2k∥ ≤ 2E[∥e2k∥ |
Fk−1]}, the second inequality holds dues to Assumption 2.5 on the noise and Jensen inequality,
E[∥e2k∥ | Fk−1] ≤

√
E[∥e2k∥2 | Fk−1] ≤ σ, and the last equality holds since ∥F (uk)∥ is measurable

in Fk−1. Hence, it follows that
∞∑
k=0

βk min

{
1,

1

∥F (uk)∥+ σ

}
≤

∞∑
k=0

E[γk | Fk−1]. (49)

Now, we want to show that
∑∞

k=0 βk min
{
1, 1

∥F (uk)∥+σ

}
is not summable almost surely, i.e.

P(
∑∞

k=0 βk min
{
1, 1

∥F (uk)∥+σ

}
= ∞) = 1. We will do so by showing a.s. boundedness of

∥F (uk)∥ for all k ≥ 0, using property of α-symmetric operators. To estimate ∥F (uk)∥, we add and
subtract F (v∗), where v∗ ∈ U∗ is an arbitrary but fixed solution, and get

∥F (uk)∥ = ∥F (uk)− F (v∗) + F (v∗)∥ ≤ ∥F (uk)− F (v∗)∥+ ∥F (v∗)∥.
Define the following event:

A = {ω ∈ Ω : ∃ C(ω) ∈ R s.t.∥uk(ω)− v∗∥ ≤ C(ω) ∀ k ≥ 0}.
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Based on results of Lemma 3.1, the sequence {∥uk − u∗∥} is bounded a.s., and thus P(A) = 1. Let
ω ∈ A, now we can estimate ∥F (uk(ω))∥ using the α-symmetric assumption on the operator.

Case α ∈ (0, 1).

∥F (uk(ω))− F (u∗)∥ ≤ ∥uk(ω)− v∗∥(K0 +K1∥F (v∗)∥α +K2∥uk(ω)− v∗∥α/(1−α)). (50)

Since ω ∈ A, it follows that for all k ≥ 0,

∥uk(ω)− v∗∥ ≤ C(ω).

Using this fact and equation (50) we obtain that for all k ≥ 0,

∥F (uk(ω))∥ ≤ C(ω)(K0 +K1∥F (v∗)∥α +K2C(ω)α/(1−α)) + ∥F (v∗)∥. (51)

Thus, the sequence {∥F (uk(ω))∥} is upper bounded by some constant C1(ω). Where C1(ω) =
C(ω)(K0 +K1∥F (v∗)∥α +K2C(ω)α/(1−α)) + ∥F (v∗)∥.

Case α = 1.

For α = 1 by Proposition 2.2 we have

∥F (uk(ω))− F (v∗)∥ ≤ ∥uk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥uk(ω)− v∗∥). (52)

We can get the following bound for ∥F (uk(ω))∥, for all k ≥ 0:

∥F (uk(ω))∥ ≤ ∥F (uk(ω))− F (v∗)∥+ ∥F (v∗)∥
≤ ∥uk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥uk(ω)− v∗∥) + ∥F (v∗)∥. (53)

Since ω ∈ A, the following bound holds for any k ≥ 0

∥uk(ω)− v∗∥ ≤ C(ω).

Using these facts and equation (53) for all k ≥ 0:

∥F (uk(ω))∥ ≤ ∥uk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥uk(ω)− v∗∥) + ∥F (v∗)∥
≤ C(ω)(L0 + L1∥F (v∗)∥) exp(L1C(ω)) + ∥F (v∗)∥. (54)

We showed that for all k ≥ 0 the norm ∥F (uk(ω))∥ is upper bounded by some constant C1(ω), where
C1(ω) = C(ω)(L0 + L1∥F (v∗)∥) exp(L1C(ω)) + ∥F (v∗)∥. Then, for both cases α ∈ (0, 1) and
α = 1 in equations (51), (54) we showed that ∥F (uk(ω))∥ is upper bounded by max{C1(ω), C1(ω)}.
Using these results and comparison test it follows that: for all ω ∈ A,

∞∑
k=0

βk min

{
1,

1

∥F (uk(ω))∥+ σ

}
≥

∞∑
k=0

βk min

{
1,

1

max{C1(ω), C1(ω)}+ σ

}

= min

{
1,

1

max{C1(ω), C1(ω)}+ σ

} ∞∑
k=0

βk

= ∞,

(55)

where the last equality holds by the choice of parameters βk:
∑∞

i=0 βk = ∞. Since P(A) = 1, it
follows that

P

( ∞∑
k=0

βk min

{
1,

1

∥F (uk)∥+ σ

}
= ∞

)
= 1.

Combining this with (49) we obtain

P

( ∞∑
k=0

E[γk | Fk−1] = ∞

)
= 1. (56)

By Lemma 3.1, we have
∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞. (57)
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Due to E[γk | Fk−1] = ∞ almost surely, it follows that

lim inf
k→∞

distp(uk, U
∗) = 0 a.s. (58)

Since ∥uk − u∗∥ converges a.s. for any given u∗ ∈ U∗, the sequence {uk} is bounded a.s. and has
accumulation points a.s. Let {ki} be an index sequence, such that

lim
i→∞

distp(uki
, U∗) = lim inf

k→∞
distp(uk, U

∗) = 0 a.s. (59)

We assume that the sequence {uki} is convergent with a limit point ū; otherwise, we choose a
convergent subsequence. Therefore,

lim
i→∞

∥uki
− ū∥ = 0 a.s. (60)

Then, by (58), dist(ū, U∗) = 0, thus ū ∈ U∗ a.s. since U∗ is closed. Since the sequence {∥uk−u∗∥}
converges a. s. for all u∗ ∈ U∗, by (60) we have

lim
k→∞

∥uk − ū∥ = 0 a.s. (61)

■

B.3 PROOF OF LEMMA 3.3

Proof. By taking the total expectation in (41) in Lemma 3.1 and using the definition of the stepsize
γk, we obtain for any solution u∗ ∈ U∗ and all k ≥ 0,

E[∥uk+1 − u∗∥2] ≤ E[∥uk − u∗∥2]− 2µE[γkdistp(uk, U
∗)] + 3β2

k(2σ
2 + 1). (62)

The equation (62) satisfies the conditions of Lemma A.3 with

v̄k = E[∥uk − u∗∥2], āk = 0, z̄k = 2µE[γk distp(uk, U
∗)], b̄k = 3β2

k(2σ
2 + 1). (63)

Thus, by Lemma A.3, it follows that the sequence {E[∥uk − u∗∥2]} converges to a non-negative
scalar for any u∗ ∈ U∗. Therefore, the sequence {E[∥uk − u∗∥2]} is bounded for all u∗ ∈ U∗. Next,
using the property of α-symmetric operators, we show that {E[∥F (uk)∥]} is bounded. Let v∗ ∈ U∗

be an arbitrary, but fixed solution. Then, by the α-symmetric property of F , we have that

∥F (uk)∥ ≤ ∥F (uk)− F (v∗)∥+ ∥F (v∗)∥
≤ ∥uk − v∗∥(K0 +K1∥F (v∗)∥α +K2∥uk − v∗∥α/(1−α)) + ∥F (v∗)∥.

(64)

Taking expectation, we obtain

E[∥F (uk)∥] ≤ (K0 +K1∥F (v∗)∥α)E[∥uk − v∗∥] +K2E[∥uk − v∗∥1+α/(1−α))] + ∥F (v∗)∥.
(65)

Notice, that E[∥uk − v∗∥1+α/(1−α))] = E[(∥uk − v∗∥2)1/2(1−α))], and for α ≤ 1/2, the quantity
1/2(1− α) ≤ 1. Thus, we can apply Jensen inequality for concave function

E[(∥uk − v∗∥2)1/2(1−α))] ≤ E[∥uk − v∗∥2]1/2(1−α).

Therefore, using these results and Jensen inequality for the first term in equation (65), we obtain

E[∥F (uk)∥] ≤ (K0 +K1∥F (v∗)∥α)E[∥uk − v∗∥2]1/2 +K2E[∥uk − v∗∥2]1/2(1−α) + ∥F (v∗)∥.
(66)

Since E[∥uk−v∗∥2] is bounded, E[∥F (uk)∥] is bounded by some constant CF > 0 for all k ≥ 0. ■

B.4 PROOF OF THEOREM 3.4

Proof. Letting y = PU∗(uk) in equation (39) in Lemma 3.1 and using p-quasi sharpness we obtain

∥uk+1 − PU∗(uk)∥2 ≤ ∥uk − PU∗(uk)∥2 − 2µγkdist
p(uk, U

∗)

+ 2γk⟨ek, uk − PU∗(uk)⟩+ 3β2
k(∥ek∥2 + ∥e2k∥2 + 1). (67)
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By the definition of the distance function, we have

dist2(uk+1, U
∗) ≤ ∥uk+1 − PU∗(uk)∥2.

Thus,

dist2(uk+1, U
∗) ≤ dist2(uk, U

∗)− 2µγkdist
p(uk, U

∗)

+ 2γk⟨ek, uk − PU∗(uk)⟩+ 3β2
k(∥ek∥2 + ∥e2k∥2 + 1). (68)

By Assumption 2.5 and the law of total expectation, and independence of samples ξk and ξ2k, it
follows that

E[γk⟨ek, uk − PU∗(uk)⟩] = E[E[γk⟨ek, uk − PU∗(uk)⟩ | Fk−1]]

= E[E[γk | Fk−1]⟨E[ek | |Fk−1], uk − PU∗(uk)⟩]
= 0. (69)

Also, we have E[E[∥e1k∥ | Fk−1] ≤ σ2 and E[E[∥e2k∥ | Fk−1] ≤ σ2. Thus, by taking the total
expectation in (68), we obtain

E[dist2(uk+1, U
∗)] ≤ E[dist2(uk, U

∗)]− 2µE[γkdistp(uk, U
∗)] + 3β2

k(2σ
2 + 1). (70)

We aim to upper bound 2µE[γkdistp(uk, U
∗)]. To do so consider an event Ak, defined as follows:

Ak = {∥F (uk)∥+ ∥ek∥ ≤ 2(E[∥F (uk)∥] + E[∥ek∥])}.
Then, by the law of total expectation, we obtain

E[γkdistp(uk, U
∗)] = E[γkdistp(uk, U

∗)|Ak]P(Ak) + E[γkdistp(uk, U
∗)|Ak]P(Ak), (71)

where A denotes the complement of an event A. We want to provide a lower bound on P(Ak). To do
so, we upperbound P(Ak) using Markov’s inequality, as follows:

P(Ak) = P ({∥F (uk)∥+ ∥ek∥ > 2(E[∥F (uk)∥] + E[∥ek∥])})

≤ E[∥F (uk)∥] + E[∥ek∥]
2(E[∥F (uk)∥] + E[∥ek∥])

=
1

2
. (72)

Thus,

E[γkdistp(uk, U
∗)] = E[γkdistp(uk, U

∗)|Ak](1− P(Ak)) + E[γkdistp(uk, U
∗)|Ak]P(Ak)

≥ 1

2
E[γkdistp(uk, U

∗)|Ak] + E[γkdistp(uk, U
∗)|Ak]P(Ak)

≥ 1

2
E[γkdistp(uk, U

∗)|Ak]. (73)

By the definition of the event Ak, we have

E[γkdistp(uk, U
∗)|Ak] = βkE

[
min

{
1,

1

∥Φ(uk, ξk)∥

}
distp(uk, U

∗)|Ak

]
≥ βkE

[
min

{
1,

1

∥F (uk)∥+ ∥ek∥

}
distp(uk, U

∗)|Ak]

]
≥ βk min

{
1,

1

2(E[∥F (uk)∥] + E[∥ek∥])

}
E[distp(uk, U

∗)|Ak]. (74)

By Lemma 3.3, E[∥F (uk)∥] ≤ CF for all k ≥ 0, and by Assumption 2.5 and Jensen inequality, we
have E[∥ek∥] ≤ E[∥ek∥2]1/2 ≤ σ. Thus, it follows that

E[γkdistp(uk, U
∗)] ≥ 1

2
βk min

{
1,

1

2(CF + σ)

}
E[distp(uk, U

∗)]. (75)

Combining equations (70) and (75), and using a = µmin
{
1, 1

2(CF+σ)

}
, we obtain

E[dist2(uk+1, U
∗)] ≤ E[dist2(uk, U

∗)]− aβkE[distp(uk, U
∗)] + 3β2

k(2σ
2 + 1). (76)
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Now let Dk = E[dist2(uk, U
∗)], and consider the following two cases:

Case p = 2. When p = 2, equation (76) satisfies the assumptions of Lemma A.6 with

rk = Dk, αk = βk, sk = 0, d = a, c = 3(2σ2 + 1). (77)

Then, by Lemma A.6, we get the following convergence rate for all k ≥ 1,

Dk+1 ≤ 8D0

k2
+

6(2σ2 + 1)

a2k
. (78)

Case p > 2. When p ≥ 2, By applying telescoping sum to inequality (76) and rearranging the terms NEW
we obtain

E[a
k∑

t=0

βkdist
p(uk, U

∗)] ≤ D0 −Dk+1 + 3(2σ2 + 1)

k∑
t=0

β2
k. (79)

Since p ≥ 2, the function distp(·, U∗) is convex, thus by defining ūk = (
∑k

t=0 βk)
−1
∑k

t=0 βkut

and applying Jensen inequality be obtain

(

k∑
t=0

βk)E[distp(ūk, U
∗)] ≤ E[

k∑
t=0

βkdist
p(uk, U

∗)].

Since p ≥ 2, by applying Jensen inequality one more time, we obtain

(D̄k)
p/2 =

(
E[dist2(ūk, U

∗)]
)p/2 ≤ E

[(
dist2(ūk, U

∗)
)p/2]

= E[distp(ūk, U
∗)].

Applying these estimates, we get

(D̄k)
p/2

k∑
t=0

βt ≤
k∑

t=0

βtD
p/2
t ≤ 1

a

(
D0 −Dk+1 + 3(2σ2 + 1)

k∑
t=0

β2
t

)
. (80)

Since βk = b
(k+1)q , with b > 0, 1 > q > 1/2, then {βk} satisfies the conditions of Lemma 3.3. Also,

by Lemma A.7 the following inequalities hold: for all k ≥ 1,

k∑
t=0

βt ≥
b

1− q
((k + 1)1−q − 21−q),

k∑
t=0

β2
t ≤ b2

2q − 1
. (81)

Combining equations (80) and (81), and omitting Dk+1, we obtain

(D̄k)
p/2 ≤

(1− q)
(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)
ab ((k + 1)1−q − 21−q)

. (82)

Raising both sides of the preceding inequality in power 2/p, we obtain

D̄k ≤
(1− q)2/p

(
D0 + 3b2(2σ2 + 1)/(2q − 1)

)2/p
(ab)2/p ((k + 1)1−q − 21−q)

2/p
. (83)

■

C KORPELEVICH METHOD ANALYSIS

Lemma C.1. Let U be a closed convex set. Then, for the iterate sequences {uk} and {hk} generated
by the stochastic Korpelevich method (8) and y ∈ U and k ≥ 0,

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩ − 2γk⟨e2k, uk − y⟩
+ 3γ2

k∥F (hk)− F (uk)∥2 + 3γ2
k(∥e2k∥2 + ∥e1k∥2),

where e1k = Φ(hk, ξ
1
k)− F (hk), e2k = Φ(uk, ξ

2
k)− F (uk) for all k ≥ 0.
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Proof. Let k ≥ 0 be arbitrary but fixed. By the definition of hk+1 in (8), we have ∥hk+1 − y∥ =
∥PU (hk − γkΦ(uk, ξ

2
k)) − y∥ for any y ∈ U . Using the projection inequality, we obtain for any

y ∈ U ,

∥hk+1 − y∥2 ≤ ∥hk − γkΦ(uk, ξ
2
k)− y∥2 − ∥hk+1 − hk + γkΦ(uk, ξ

2
k)∥2

≤ ∥hk − y∥2 − ∥hk+1 − hk∥2 + 2γk⟨Φ(uk, ξ
2
k), y − hk+1⟩.

(84)

Next, we consider the term ∥hk+1 − hk∥2, where we add and subtract uk, thus

∥hk+1 − hk∥2 = ∥hk+1 − uk∥2 + ∥hk − uk∥2 − 2⟨hk+1 − uk, hk − uk⟩. (85)

Adding and subtracting 2γk⟨Φ(hk, ξ
1
k), uk − hk+1⟩, and combining (84) and (85) we obtain

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk+1 − uk∥2 − ∥hk − uk∥2 + 2⟨hk+1 − uk, hk − uk⟩
+ 2γk⟨Φ(uk, ξ

2
k), y − uk + uk − hk+1⟩+ 2γk⟨Φ(hk, ξ

1
k)− Φ(hk, ξ

1
k), uk − hk+1⟩

≤ ∥hk − y∥2 − ∥hk+1 − uk∥2 − ∥hk − uk∥2 + 2⟨hk+1 − uk, hk − γkΦ(hk, ξ
1
k)− uk⟩

+ 2γk⟨Φ(uk, ξ
2
k), y − uk⟩+ 2γk⟨Φ(hk, ξ

1
k)− Φ(uk, ξ

2
k), hk+1 − uk⟩.

(86)

Since uk = PU (hk − γkΦ(hk, ξ
1
k)) and hk+1 ∈ U , by the projection inequality in (25), it follows

that
2⟨hk+1 − uk, hk − γkΦ(hk, ξ

1
k)− uk⟩ ≤ 0.

Using Cauchy-Schwarz inequality and relation 2ab ≤ a2 + b2 for a, b ∈ R, we obtain

2γk⟨Φ(hk, ξ
1
k)− Φ(uk, ξ

2
k), hk+1 − uk⟩ ≤ 2γk∥Φ(hk, ξ

1
k)− Φ(uk, ξ

2
k)∥∥hk+1 − uk∥

≤ γ2
k∥Φ(hk, ξ

1
k)− Φ(uk, ξ

2
k)∥2 + ∥hk+1 − uk∥2.

Using triangle inequality and relation (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i we get

∥Φ(hk, ξ
1
k)− Φ(uk, ξ

2
k)∥2 = ∥Φ(hk, ξ

1
k)− F (hk) + F (hk)− F (uk) + F (uk)− Φ(uk, ξ

2
k)∥2

≤ 3(∥e1k∥2 + ∥F (hk)− F (uk)∥2 + ∥e2k∥2).

Combining the preceding three estimates with (86), we get the stated relation

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩ − 2γk⟨e2k, uk − y⟩
+ 3γ2

k∥F (hk)− F (uk)∥2 + 3γ2
k(∥e2k∥2 + ∥e1k∥2).

■

C.1 PROOF OF LEMMA 4.1

Proof. By Lemma C.1 we have for all k ≥ 0 and for all y ∈ U ,

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − ∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩ − 2γk⟨e2k, uk − y⟩
+ 3γ2

k∥F (hk)− F (uk)∥2 + 3γ2
k(∥e2k∥2 + ∥e1k∥2),

(87)

with e1k = Φ(hk, ξ
1
k)− F (hk) and e2k = Φ(uk, ξ

2
k)− F (uk) for all k ≥ 0. We want to estimate the

term ∥F (hk)− F (hk−1)∥2 on the LHS of the inequality using the fact that F (·) is an α-symmetric
operator for two cases (a) α ∈ (0, 1) and (b) α = 1.

Case α ∈ (0, 1). Using the alternative characterization of α-symmetric operators from Proposi-
tion 2.2(a) (as given in (4)), when α ∈ (0, 1), the next inequality holds for any k ≥ 0,

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(K0 +K1∥F (hk)∥α +K2∥hk − uk∥α/(1−α)). (88)

We want to separate ∥F (hk)∥ into two parts: stochastic approximation of operator Φ(hk, ξ
1
k) and

error e1k. Recall that e1k = F (hk) − Φ(hk, ξ
1
k), then based on triangle inequality ∥F (hk)∥ ≤

∥Φ(hk, ξ
1
k)∥+ ∥e1k∥, and since α ≤ 1 we obtain

∥F (hk)∥α ≤ ∥Φ(hk, ξ
1
k)∥α + ∥e1k∥α. (89)
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Thus, combining this fact with (88) we get the following estimation

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(K0 +K1∥Φ(hk, ξ
1
k)∥α +K1∥e1k∥α +K2∥hk − uk∥α/(1−α)).

(90)

By the projection property (26) and the stepsize choice (16), we have

∥hk − uk∥ ≤ γk∥Φ(hk, ξ
1
k)∥ = βk min{1, 1

∥Φ(hk, ξ1k)∥
}∥Φ(hk, ξ

1
k)∥ ≤ βk ≤ 1. (91)

Then, K2∥hk − uk∥α/(1−α) ≤ K2, and

γk∥F (hk)− F (uk)∥ ≤ γk(K0 +K1∥Φ(hk, ξ
1
k)∥α +K1∥e1k∥α +K2)∥hk − uk∥

≤ βk(K0 min{1, 1

∥Φ(hk, ξ1k)∥
}+K1 min{1, 1

∥Φ(hk, ξ1k)∥
}∥Φ(hk, ξ

1
k)∥α)∥hk − uk∥

+ βk(K1∥e1k∥α +K2 min{1, 1

∥Φ(hk, ξ1k)∥
})∥hk − uk∥

≤ βk(K0 +K1 +K2)∥hk − uk∥+ βkK1∥e1k∥α∥hk − uk∥.
(92)

By inequality (91), we have ∥hk − uk∥ ≤ 1, and using this estimate in equation (92) we obtain

γk∥F (hk)− F (uk)∥ ≤ βk(K0 +K1 +K2)∥hk − uk∥+ βkK1∥e1k∥α. (93)

Case α = 1. Based on the alternative characterization of α-symmetric operators from Proposi-
tion 2.2(b) (as given in (16)), when α = 1, the following inequality holds for any k ≥ 0,

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(L0 + L1∥Φ(hk, ξ
1
k)∥) exp(L1∥hk − uk∥). (94)

We upperbound ∥F (hk)∥ using equation (89) and get

∥F (hk)− F (uk)∥ ≤ ∥hk − uk∥(L0 + L1∥F (hk)∥+ L1∥e1k∥) exp(L1∥hk − uk∥). (95)

Note that relation in (91) holds irrespective of the value of α. Thus, since ∥hk − uk∥ ≤ 1, we have
exp(L1∥hk − uk∥) ≤ exp(L1βk), and we obtain

γk∥F (hk)− F (uk)∥ ≤ γk(L0 + L1∥Φ(hk, ξ
1
k)∥+ L1∥e1k∥) exp(L1βk)∥hk − uk∥

= exp(L1βk)L0βk min{1, 1

∥Φ(hk, ξ1k)∥
}∥hk − uk∥

+ exp(L1βk)L1βk min{1, 1

∥Φ(hk, ξ1k)∥
}∥Φ(hk, ξ

1
k)∥∥hk − uk∥

+ exp(L1βk)L1βk min{1, 1

∥Φ(hk, ξ1k)∥
}∥e1k∥∥hk − uk∥

≤ exp(L1βk)βk(L0 + L1 + L1∥e1k∥)∥hk − uk∥.

(96)

By inequality (91), we have ∥hk − uk∥ ≤ 1. Using this estimate in (96), we furher obtain

γk∥F (hk)− F (uk)∥ ≤ exp(L1βk)βk(L0 + L1)∥hk − uk∥+ exp(L1βk)βk∥e1k∥. (97)

Now, we are done with the cases of α values. Let

Ca(βk, α) =

{
(K0 +K1 +K2), when α ∈ (0, 1),

exp(L1βk)(L0 + L1), when α = 1.
(98)

Also, define

Ce(βk, α) =

{
K1, when α ∈ (0, 1),

exp(L1βk), when α = 1.
(99)

Then, by inequality (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , for both cases we have

γ2
k∥F (hk)− F (uk)∥2 ≤ 2β2

kCa(βk, α)
2∥hk − uk∥2 + 2β2

kCe(βk, α)
2∥e1k∥2α. (100)
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Combining preceding inequality with (87) we obtain that for any k ≥ 0,

∥hk+1 − y∥2 ≤ ∥hk − y∥2 − (1− 6β2
kCa(βk, α)

2)∥hk − uk∥2 − 2γk⟨F (uk), uk − y⟩
− 2γk⟨e2k, uk − y⟩+ 6β2

kCe(βk, α)
2∥e1k∥2α + 3γ2

k(∥e2k∥2 + ∥e1k∥2).
(101)

Next, we plug y = u∗, where u∗ ∈ U∗ is an arbitrary solution and use p-quasi sharpness of the
operator F to obtain

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − (1− 6β2
kCa(βk, α)

2)∥hk − uk∥2 − 2γkµdist
p(uk, U

∗)

− 2γk⟨e2k, uk − u∗⟩+ 6β2
kCe(βk, α)

2∥e1k∥2α + 3γ2
k(∥e2k∥2 + ∥e1k∥2).

(102)

By the stepsize choice γk ≤ βk, thus

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − (1− 6β2
kCa(βk, α)

2)∥hk − uk∥2 − 2γkµdist
p(uk, U

∗)

− 2γk⟨e2k, uk − u∗⟩+ 6β2
kCe(βk, α)

2∥e1k∥2α + 3β2
k(∥e2k∥2 + ∥e1k∥2).

(103)

Since
∑∞

k=0 β
2
k < ∞, it follows that βk → 0. By definitions of Ca(βk, α) and Ce(βk, α) in (98)

and (99), respectively, there exists N ≥ 0 such that the stepsizes satisfy 1− 6β2
kCa(βk, α)

2 ≥ 1
2 and

Ce(βk, α)
2 ≤ max{K1, exp(L1, βk)} ≤ max{K1, 2}. Thus, the following inequality holds for any

k ≥ N ,

∥hk+1 − u∗∥2 ≤ ∥hk − u∗∥2 − 1

2
∥hk − uk∥2 − 2γkµdist

p(uk, U
∗)

− 2γk⟨e2k, uk − u∗⟩+ 3β2
k(∥e2k∥2 + ∥e1k∥2 + 2max{K1, 2}∥e1k∥2α).

(104)

Recalling that e1k = Φ(hk, ξ
1
k)−F (hk), e

2
k = Φ(uk, ξ

2
k)−F (uk) and using the stochastic properties

of ξ1k, ξ
2
k imposed by Assumption 2.5 and method’s updates, we have

E[γk⟨e2k, uk − u∗⟩ | Fk−1] = E[γkE[⟨e2k, uk − u∗⟩ | Fk−1 ∪ {ξ1k}] | Fk−1] = 0,

since stepsize γk is measurable in Fk−1 ∪ {ξ1k}. Also, it holds that for all k ≥ 0,

E[E[∥e2k∥2 | Fk−1 ∪ {ξ1k}]|Fk−1] ≤ σ2, and E[∥e1k∥2 | Fk−1] ≤ σ2.

Moreover, since α ≤ 1, the conditional expectation E[∥e1k∥2α|Fk−1] is finite, and by Jensen inequal-
ity, it follows that for all k ≥ 0,

E[∥e1k∥2α|Fk−1] ≤ σ2α.

Therefore, by taking the conditional expectation on Fk−1 in relation (104), we obtain for all u∗ ∈ U∗

and for all k ≥ N ,

E[∥hk+1 − u∗∥2|Fk−1] ≤ ∥hk − u∗∥2 − 1

2
∥hk − uk∥2 − 2E[γk | Fk−1]µdist

p(uk, U
∗)

+ 6β2
k(σ

2 +max{K1, 2}σ2α).
(105)

By Lemma A.2, it follows that the sequence {∥hk − u∗∥2} converges a.s. to a non-negative scalar
for any u∗ ∈ U∗, and almost surely we have

∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞,

∞∑
k=0

∥hk − uk∥2 < ∞. (106)

Since the sequence {∥hk − u∗∥2} converges a.s. for all u∗ ∈ U∗, it follows that the sequence
{∥hk − u∗∥} is bounded a.s. for all u∗ ∈ U∗. ■

C.2 PROOF OF THEOREOM 4.2

Proof. By Lemma 4.1, we almost surely have
∞∑
k=0

E[γk | Fk−1] dist
p(uk, U

∗) < ∞. (107)
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The structure of the stepsizes γk (16) for the Korpelevich method is similar to the stepsizes sequence
for the projection method. Following the proof of Theorem 3.2 we obtain

∞∑
k=0

E[γk | Fk−1] = ∞ a.s. (108)

We provide the full proof of this result below, in spite of the fact it is equivalent to the proof of the
same result in Theorem 3.2.

Firstly, we provide a sequence of lower bounds on E[γk | Fk−1]. First, consider the following event:

Ak = {∥e1k∥ ≤ 2E[∥e1k∥ | Fk−1]},

where e1k = F (hk) − Φ(hk, ξ
1
k) is a stochastic error from the sample for the clipping stepsize γk.

Then, by the law of total expectation

E[γk | Fk−1] = E[γk | Fk−1 ∪Ak]P(Ak | Fk−1) + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1). (109)

We want to provide a lower bound on P(Ak | Fk−1), to do so, we upperbound P(Ak | Fk−1) using
Markov’s inequality and Assumption 2.5:

P(Ak | Fk−1) = P(∥e1k∥ > 2E[∥e1k∥ | Fk−1]}) ≤
E[∥e1k∥ | Fk−1]

2E[∥e1k∥ | Fk−1])
=

1

2
. (110)

Thus,

E[γk | Fk−1] = E[γk | Fk−1 ∪Ak](1− P(Ak | Fk−1)) + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1)

≥ 1

2
E[γk | Fk−1 ∪Ak] + E[γk | Fk−1 ∪Ak]P(Ak | Fk−1)

≥ 1

2
E[γk | Fk−1 ∪Ak].

(111)

By the definition of γk and the triangle inequality, we have

E[γk | Fk−1 ∪Ak] = βkE[min

{
1,

1

∥Φ(hk, ξ2k)∥

}
| Fk−1 ∪Ak]

≥ βkE
[
min

{
1,

1

∥F (hk)∥+ ∥e2k∥

}
| Fk−1 ∪Ak

]
.

(112)

Next, we use the definition of the event Ak and obtain the following lower bound:

E[γk | Fk−1 ∪Ak] ≥ βkE[min

{
1,

1

∥F (hk)∥+ 2E[∥e2k∥ | Fk−1]

}
| Fk−1 ∪Ak]

≥ βkE[min

{
1,

1

∥F (hk)∥+ 2σ

}
| Fk−1 ∪Ak]

= βk min

{
1,

1

∥F (hk)∥+ 2σ

}
. (113)

The first inequality in the preceding equation holds by the definition of the event Ak = {∥e2k∥ ≤
2E[∥e2k∥ | Fk−1]}, while the second inequality holds due to Assumption 2.5 on the ξ-samples and
Jensen inequality, E[∥e2k∥ | Fk−1] ≤

√
E[∥e2k∥2 | Fk−1] ≤ σ. Hence, we have that

∞∑
k=0

1

2
βk min

{
1,

1

∥F (hk)∥+ 2σ

}
≤

∞∑
k=0

E[γk | Fk−1]. (114)

Now, we want to show that
∑∞

k=0 βk min
{
1, 1

∥F (hk)∥+2σ

}
is not summable almost surely, i.e.

P(
∑∞

k=0 βk min
{
1, 1

∥F (hk)∥+2σ

}
= ∞) = 1. We will do so by showing a.s. boundedness of
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∥F (hk)∥ for all k ≥ 0, using property of α-symmetric operators. To estimate ∥F (hk)∥, we add and
subtract F (v∗), where v∗ ∈ U∗ is an arbitrary but fixed solution, and get

∥F (hk)∥ = ∥F (hk)− F (v∗) + F (v∗)∥ ≤ ∥F (hk)− F (v∗)∥+ ∥F (v∗)∥.

Define the following event:

A = {ω ∈ Ω : ∃ C(ω) ∈ R s.t.∥hk(ω)− v∗∥ < C(ω) ∀ k ≥ 0}.
Based on Lemma 4.1, the sequence {∥hk − v∗∥} is bounded a.s., and thus P(A) = 1. Let ω ∈ A,
now we can estimate ∥F (hk(ω))∥ using the α-symmetric assumption on the operator.

Case α ∈ (0, 1).

∥F (hk(ω))− F (u∗)∥ ≤ ∥hk(ω)− v∗∥(K0 +K1∥F (v∗)∥α +K2∥hk(ω)− v∗∥α/(1−α)). (115)

Since ω ∈ A, it follows that ∥hk(ω)− v∗∥ ≤ C(ω) for all k ≥ 0. Using this fact and (115) we obtain
that for all k ≥ 0,

∥F (hk(ω))∥ ≤ C(ω)(K0 +K1∥F (v∗)∥α +K2C(ω)α/(1−α)) + ∥F (v∗)∥. (116)

Therefore, the sequence {∥F (hk(ω))∥} is upper bounded by C1(ω) = C(ω)(K0 +K1∥F (v∗)∥α +
K2C(ω)α/(1−α)) + ∥F (v∗)∥.

Case α = 1.

For α = 1 by Proposition 2.2 we have

∥F (hk(ω))− F (v∗)∥ ≤ ∥hk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥hk(ω)− v∗∥). (117)

Therefore, for all k ≥ 0,

∥F (hk(ω))∥ ≤ ∥F (hk(ω))− F (v∗)∥+ ∥F (v∗)∥
≤ ∥hk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥hk(ω)− v∗∥) + ∥F (v∗)∥. (118)

Since ω ∈ A, we have ∥hk(ω)− v∗∥ ≤ C(ω) for all k ≥ 0, which when used in (118), implies that
for all k ≥ 0,

∥F (hk(ω))∥ ≤ ∥hk(ω)− v∗∥(L0 + L1∥F (v∗)∥) exp(L1∥hk(ω)− v∗∥) + ∥F (v∗)∥
≤ C(ω)(L0 + L1∥F (v∗)∥) exp(L1C(ω)) + ∥F (v∗)∥. (119)

Hence, the sequence {∥F (hk(ω))∥} is upper bounded by C1(ω), where C1(ω) = C(ω)(L0 +
L1∥F (v∗)∥) exp(L1C(ω)) + ∥F (v∗)∥.

Now, for both cases α ∈ (0, 1) and α = 1 in (116) and (119), respectively, we have that ∥F (hk(ω))∥
is upper bounded by max{C1(ω), C1(ω)}. Using this and a comparison test, we obtain

∞∑
k=0

βk min

{
1,

1

∥F (hk(ω))∥+ 2σ

}
≥

∞∑
k=0

βk min

{
1,

1

max{C1(ω), C1(ω)}+ 2σ

}

= min

{
1,

1

max{C1(ω), C1(ω)}+ 2σ

} ∞∑
k=0

βk

= ∞,

(120)

where the last equality holds by
∑∞

i=0 βk = ∞. Thus,
∞∑
k=0

E[γk | Fk−1] = ∞ a.s. (121)

Since,
∑∞

k=0 E[γk | Fk−1] = ∞ almost surely, from (107) it follows that

lim inf
k→∞

distp(uk, U
∗) = 0 a.s. (122)

By Lemma 4.1, the sequence {∥hk − u∗∥} converges a.s. for any given u∗ ∈ U∗. Thus, the sequence
{hk} is bounded a.s. and, consequently, it has accumulation points a.s. In view of relation (20) in
Lemma 4.1, it follows that

lim
k→∞

∥hk − uk∥ = 0 a.s. (123)
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Therefore, the sequences {uk} and {hk} have the same accumulation points a.s.

Now, let {ki | i ≥ 1} be a (random) index sequence such that

lim
i→∞

distp(uki
, U∗) = lim inf

k→∞
distp(uk, U

∗) = 0 a.s. (124)

Without loss of generality, we may assume that {hki} is a convergent sequence (for otherwise, we
will select a convergent subsequence), and let ū be its (random) limit point, i.e.,

lim
i→∞

∥hki − ū∥ = 0 a.s. (125)

By relation (20), it follows that limk→∞ ∥hk − uk∥ = 0 a.s., which in view of the preceding relation
implies that

lim
i→∞

∥uki
− ū∥ = 0 a.s.

By continuity of the distance function dist(·, U∗), from relation (124) we conclude that dist(ū, U∗) =
0 a.s., which implies that ū ∈ U∗ almost surely since the set U∗ is closed. Since the sequence
{∥hk − u∗∥2} converges a.s. for any u∗ ∈ U∗, it follows that limk→∞ ∥hk − ū∥ = 0 a.s. By
relation (123) we conclude that limk→∞ ∥uk − ū∥ = 0 a.s. ■

C.3 PROOF OF LEMMA 4.3

Proof. The choice of parameters βk, ensures that 1− 6β2
k(K0 +K1 +K3)

2 ≥ 1/2. Then, by taking
the expectation in (19) of Lemma 4.1 and using Assumption 2.5, and definition of Ce(βk, α) = K1

for α ∈ (0, 1), we obtain

E[∥hk+1 − u∗∥2] ≤ E[∥hk − u∗∥2]− 1

2
E[∥hk − uk∥2]− 2E[γkµdistp(uk, U

∗)]

+ 6β2
k(σ

2 +K1σ
2α).

(126)

The equation (126) satisfies the condition of Lemma A.3 with

v̄k = E[∥uk − u∗∥2], āk = 0, b̄k = 6β2
k(σ

2 +K1σ
2α),

z̄k = 2µE[γk distp(uk, U
∗)] +

1

2
E[∥hk − uk∥2]. (127)

By Lemma A.2, it follows that the sequence E[∥hk − u∗∥2] converges to a non-negative scalar for
any u∗ ∈ U∗. Since the sequence {E[∥hk − u∗∥2]} converges for all u∗ ∈ U∗, it follows that
the sequence {E[∥hk − u∗∥2]} is bounded for all u∗ ∈ U∗. Next, using property of α-symmetric
operators, we show that E[∥F (hk)∥] is bounded for all k ≥ 0. Let v∗ ∈ U∗ be an arbitrary but fixed
solution. Since α ≤ 1/2, it holds that

∥F (hk)∥ ≤ ∥F (hk)− F (v∗)∥+ ∥F (v∗)∥
≤ ∥hk − v∗∥(K0 +K1∥F (v∗)∥α +K2∥hk − v∗∥α/(1−α)) + ∥F (v∗)∥.

(128)

Taking the expectation, we obtain

E[∥F (hk)∥] ≤ (K0 +K1∥F (v∗)∥α)E[∥hk − v∗∥] +K2E[∥hk − v∗∥1+α/(1−α))] + ∥F (v∗)∥.
(129)

Notice that E[∥hk − v∗∥1+α/(1−α))] = E[(∥hk − v∗∥2)1/2(1−α))] and, for α ≤ 1/2, the quantity
1/2(1− α) ≤ 1. Thus, we can apply Jensen inequality for concave function

E[(∥hk − v∗∥2)1/2(1−α))] ≤ E[∥hk − v∗∥2]1/2(1−α).

Therefore, using the preceding relation and Jensen inequality for the first term on the RHS of
equation (129), we obtain

E[∥F (hk)∥] ≤ (K0 +K1∥F (v∗)∥α)E[∥hk − v∗∥2]1/2 +K2E[∥hk − v∗∥2]1/2(1−α) + ∥F (v∗)∥.
(130)

Since E[∥hk − v∗∥2] is bounded, it follows that E[∥F (hk)∥] is bounded by some constant CF > 0
for all k ≥ 0. ■
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C.4 PROOF OF THEOREM 4.4

Proof. The choice of the parameters βk ensures that 1− 6β2
k(K0 +K1 +K2)

2 ≥ 1
2 , then by letting

u∗ = PU∗(hk) in (104) in the proof of Lemma 4.1, with Ce(βk, α) = K1, we get

∥hk+1 − PU∗(hk)∥2 ≤ dist2(hk, U
∗)− 1

2
∥hk − uk∥2 − 2γkµdist

p(uk, U
∗)

− 2γk⟨e2k, uk − u∗⟩+ 3β2
k(∥e2k∥2 + ∥e1k∥2 + 2K1∥e1k∥2α).

(131)

By the definition of the distance function, we have

dist2(uk+1, U
∗) ≤ ∥uk+1 − PU∗(uk)∥2.

Thus,

dist2(hk+1, U
∗) ≤ dist2(hk, U

∗)− 1

2
∥hk − uk∥2 − 2γkµdist

p(uk, U
∗)

− 2γk⟨e2k, uk − u∗⟩+ 3β2
k(∥e2k∥2 + ∥e1k∥2 + 2K1∥e1k∥2α).

(132)

Next, we estimate the term distp(uk, U
∗) in (132). By the triangle inequality, we have

∥hk − u∗∥ ≤ ∥uk − hk∥+ ∥uk − u∗∥ for all u∗ ∈ U∗,

and by taking the minimum over u∗ ∈ U∗ on both sides of the preceding relation, we obtain

dist(hk, U
∗) ≤ ∥uk − hk∥+ dist(uk, U

∗). (133)

Applying Lemma A.5 with p > 0 in equation (133) yields

distp(hk, U
∗) ≤ (∥uk − hk∥+ dist(uk, U

∗))p

≤ 2p−1∥uk − hk∥p + 2p−1 distp(uk, U
∗).

(134)

Using projection inequality (26), and stepsizes choice (16), we obtain

∥uk − hk∥ ≤ ∥γkΦ(hk, ξ
1
k)∥ ≤ 1.

Combining this result with equation (134), with p ≥ 2, we get

distp(hk, U
∗) ≤ 2p−1∥uk − hk∥2+(p−2) + 2p−1distp(uk, U

∗)

≤ 2p−1∥uk − hk∥2 + 2p−1 distp(uk, U
∗).

(135)

By dividing the relation in (135) with 2p−1 and by rearranging the terms, we obtain the following
relation

−distp(uk, U
∗) ≤ ∥uk − hk∥2 − 21−p distp(hk, U

∗). (136)

Combining the preceding inequality with (132), we find that for any k ≥ 0,

dist2(hk+1, U
∗) ≤ dist2(hk, U

∗)− 22−pµγkdist
p(hk, U

∗)− 1

2
∥uk − hk∥2 + 2µγk ∥uk − hk∥2

− 2γk⟨e2k, uk − u∗⟩+ 3β2
k(∥e2k∥2 + ∥e1k∥2 + 2K1∥e1k∥2α).

(137)

By the choice of βk, we have βk =
2

a( 2da + k)
, where a = µmin

{
1, 1

2(CF+σ)

}
and d ≥ 4µ. Thus,

for all k ≥ 0,

βk ≤ 1

d
≤ 1

4µ
=⇒ 2µβk ≤ 1

2
.

By the definition of the stepsize γk, we always have γk ≤ βk. Therefore, 2µγk ≤ 2µβk ≤ 1
2 for all

k ≥ 0, thus implying that

−1

2
∥uk − hk∥2 + 2µγk ∥uk − hk∥2 ≤ 0. (138)
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Using the stochastic properties of ξk imposed by Assumption 2.5, we have for all k ≥ 0,

E[E[γkE[⟨e2k, uk − u∗⟩ | Fk−1 ∪ {ξ1k}] | Fk−1]] = 0,

E[E[∥e2k∥2 | Fk−1 ∪ {ξ1k}]] ≤ σ2, E[E[∥e1k∥2 | Fk−1]] ≤ σ2. (139)

Moreover, since α ≤ 1 then the conditional expectation E[∥e1k∥2α|Fk−1] is defined, and by Jensen
inequality E[∥e1k∥2α|Fk−1] ≤ σ2α for all k ≥ 0. Thus, by taking the total expectation in relation (137)
and using an estimate from (138), we obtain for all u∗ ∈ U∗ and for all k ≥ 0,

E[dist2(hk+1, U
∗)] ≤ E[dist2(hk, U

∗)]− 22−pµE[γkdistp(hk, U
∗)] + 6β2

k(σ
2 +K1σ

2α).
(140)

The equation (140) is similar to equation (70) in the proof of Theorem 3.4, with the same stepsize
structure. Thus, by following the same arguments from equations (70) to equation (76) in the proof
of Theorem 3.4, we arrive at

E[dist2(hk+1, U
∗)] ≤ E[dist2(hk, U

∗)]− 22−pµβk min

{
1,

1

2(CF + σ)

}
E[distp(hk, U

∗)]

+ 6β2
k(σ

2 +K1σ
2α),

(141)
where CF is an upperbound on E[∥F (hk)∥] from the statement of Lemma 4.3. Now let Dk =
E[dist2(hk, U

∗)], and consider two cases p = 2 and p > 2.

Case p = 2. We note that by the definition of a = µmin
{
1, 1

2(CF+σ)

}
and d, we have that d ≥ 4µ

and µ ≥ a, implying that d ≥ a. Hence, for p = 2, relation (141) satisfies the conditions of
Lemma A.6 with the following identification

rk = Dk, a = µmin

{
1,

1

2(CF + σ)

}
, αk = βk, sk = 0, c = 6(σ2 +K1σ

2α). (142)

Therefore, for the choice βk =
2

a( 2da + k)
, we get the following convergence rate for all k ≥ 1,

Dk+1 ≤ 8d2D0

a2k2
+

12(σ2 +K1σ
2α)

a2k
. (143)

Case p > 2. From (141) by using Dk = E[dist2(hk, U
∗)] and a = µmin

{
1, 1

2(CF+σ)

}
, we obtain

for all k ≥ 0,

Dk+1 ≤ Dk − 22−paβkE[distp(hk, U
∗)] + 6β2

k(σ
2 +K1σ

2α). (144)

When p > 2, by applying Jensen inequality, we obtain

E[distp(hk, U
∗)] = E

[(
dist2(hk, U

∗)
)p/2] ≥ (E[dist2(hk, U

∗)]
)p/2

= (Dk)
p/2.

Thus, for all k ≥ 0, we have

Dk+1 ≤ Dk − 22−paβk(Dk)
p/2 + 6(σ2 +K1σ

2α)β2
k. (145)

By telescoping the inequalities in (145), we obtain for k ≥ 0,

Dk+1 ≤ D0 − 22−pa

k∑
t=0

βt(Dt)
p/2 + 6(σ2 +K1σ

2α)

k∑
t=0

β2
t . (146)

Let Dbest
k = mint=[0,...,k] Dt, then, by rearranging the term we get for all k ≥ 0,

(Dbest
k )p/2

k∑
t=0

βt ≤
k∑

t=0

βt(Dt)
p/2 ≤

D0 −Dk+1 + 6(σ2 +K1σ
2α)
∑k

t=0 β
2
t

22−pa
. (147)
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Now, we use the choice for βk, i.e., βk = b
(k+1)q , where 0 < b < 1

2
√
3(K0+K1+K2)

and 1/2 < q < 1.
Then, the sequence {βk} satisfies the conditions of Lemma 4.3. Furthermore, by Lemma A.7, we
have that for all k ≥ 1,

k∑
t=0

βt ≥
b

1− q
((k + 1)1−q − 21−q),

k∑
t=0

β2
t ≤ b2

2q − 1
. (148)

Combining equations (147) and (148), and omitting Dk+1, we obtain for all k ≥ 1,

(Dbest
k )p/2 ≤

2p−2(1− q)
(
D0 + 6b2(σ2 +K1σ

2α)(2σ2 + 1)/(2q − 1)
)

ab ((k + 1)1−q − 21−q)
. (149)

Raising both sides of the preceding inequality in power 2/p, we have that for all k ≥ 1,

Dbest
k ≤

22(p−2)/p(1− q)2/p
(
D0 + 6b2(σ2 +K1σ

2α)(2σ2 + 1)/(2q − 1)
)
)2/p

(ab)2/p ((k + 1)1−q − 21−q)
2/p

. (150)

■

D ADDITIONAL EXPERIMENTS

We investigate the robustness of the methods for a larger choice of the initial parameter value β0. In
Figure 3, we set q = 1− ϵ, and corresponding βk = 50

10+k1−ϵ , so the initial stepsize β0 ≈ 5 and run
all four methods for the same problem parameter choice. We observe that for a generalized smooth
SVI when we increase stepsizes, the performance of clipped stochastic Popov and Korpelevich
is comparable to that of both clipped stochastic versions. While in smooth SVI, the stepsizes for
stochastic Korplevich and Popov methods can be much larger than for stochastic projection methods,
improving the convergence performance of stochastic Korplevich and Popov methods.
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(a) (α ≈ 0.09, p = 2.5)
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(b) (α ≈ 0.5, p = 3.0)
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(c) (α ≈ 0.8, p = 6.0)

Figure 3: Comparison of the clipped stochastic projection, same-sample projection, Korpelevich, and
Popov methods with β = 50/(10 + k1−ϵ).
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